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Streaming from a sphere due to a pulsating source 
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The steady streaming outside the Stokes shear-wave layer, which forms on the 
surface of a sphere when placed close to an oscillatory point source, is considered. 
Particular attention is devoted to the case of high streaming Reynolds-number flow. 
Thin circular jets, analogous to the plane jets known to occur in two-dimensional 
flow, are predicted and visualized by means of a simple experiment. 

1. Introduction 
The phenomenon of acoustic streaming may arise in any fluctuating flow. Studies 

of it date back to the pioneering work of Rayleigh (1884), work that has been 
continued inter alia by Schlichting (1955), Nyborg (1953) and Westervelt (1953). 
Lighthill (1978) has clearly demonstrated the fundamental principle that it is the 
attenuation of acoustic energy flux that makes momentum flux available to force the 
streaming motion. Such attenuation may take place in the main body of the fluid, as 
for example in an ultrasonic beam, or in the neighbourhood of a solid boundary 
owing to fluid friction. The example considered herein is of the latter type. We 
consider the flow over a sphere of radius a, due to an oscillatory point source placed 
at a distance aR from its centre (R > 1). 

The flow is characterized by a streaming Reynolds number R,, based upon the 
time-independent component of the fluid velocity. Stuart (1963), in the context of 
the flow induced by a vibrating cylinder, first recognized the importance of this 
parameter, particularly for flows in which R, % 1.  Subsequently Riley (1967) 
demonstrated that when R, = O(1)  the steady streaming outside the Stokes shear- 
wave layer which forms at  the surface of the vibrating cylinder’ is governed by the 
Navier-Stokes equations for steady flow. This result owes its origin to the fact that 
the Reynolds stresses which drive the steady streaming only act directly within the 
Stokes layer, and influence the flow outside it indirectly through the persistence of 
a streaming component at its edge. For R, % 1 Stuart (1966) predicted that a jet-like 
streaming flow, along the axis of oscillation, would originate at  the cylinder. 
Davidson & Riley (1972) have demonstrated the existence of such a jet in flow- 
visualization pictures from which it was possible to make quantitative measurements 
of the jet flow. 

In a recent paper Riley (1987) has considered the steady streaming when an 
oscillatory line source is placed close, and parallel, to the generators of a circular 
cylinder. With R, % 1, jet-like flows along the axis of symmetry are again predicted, 
with a much weaker jet on the leeward side of the cylinder. This problem first 
attracted the attention of Wang (1972) who was concerned only with the case 
R, 4 1 although, as Lighthill (1978) has emphasized, all really noticeable acoustic 
streaming motions are associated with R, @ I .  Wang (1982) also considered the 
situation which forms the basis for the present paper, namely the steady streaming 
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from a sphere close to an unsteady source, where he was again concerned only with 
the case R, < 1. I n  our work we first set out, in $2,  the so1ut)ion for the basic unsteady 
tiow both within, and outside, the Stokes layer which forms at  the surface of thc 
sphere. In $ 3  we address the problem of the induced steady streaming. First, with 
R, 4 1, we correct a numerical crror in Wang’s work on the basis of which he 
incorrectly predicts an increasing multiplicity of steadily recirculating cells as the 
source approaches the sphere. But our main concern is with the case R, 9 1. We trace 
the streaming boundary-layer flow over the sphere, which develops outside the 
Stokes layer, up to the two stagnation points that form along the line joining the 
source location to the sphere centre. We pay particular attent’ion to the singularity 
in the boundary-layer solution a t  these two points as the flow erupts along the axis 
of symmetry. The flow along this axis of symmetry, weaker on the leeward than the 
windward side in relation to the source position, is in the nature of a thin circular jet. 
In  an appropriate limit where the source goes to infinity, as does its strength, the flow 
over the sphere is equivalent to  that induced by a vibrating sphere in a fluid which 
is otherwise at rest. Since the appearance of the thin circular jets, described above, 
does not seem to have been previously recorded (although their two-dimensional 
analogues are well documented, for example by Davidson & Riley 1972 ; Haddon & 
Riley 1979), we have carried out a simple experiment to demonstrate their presence. 
This is described briefly in 54, and is limited to a visualization of the jets in question. 

2. The primary unsteady solution 
We consider the flow induced over a sphere of radius a when a point source of 

strength rn cos ot’ is placed a t  a distance aR (R > 1) from the centre of the sphere, in 
a fluid which is otherwisc at  rest. In  a spherical polar coordinate system with origin 
at  the centre of the sphere the source is a t  (aR, 0,O). With the scales of velocity, 
stream function, radial distance and time chosen as m/a2R2, mlR2, a and 0-l 

respectively the equation satisfied by the stream function $ is 

a i a  a 2  a 2  

ar2 r2 ap2’ 1-,u2ar r a p  
where p = coso, D2 = -+-- L=-- +---, 
and the velocity components are given by 

In (1) the parameters E,R,  are defined as 

m m2 

oa3R2 ’ a4R4wv. 
e = -  R, = ___. (3) 

We assume the parameter E ,  which provides a measure of the ratio of fluid particle 
displacements to the radius of the sphere, to be small throughout, and R,, the 
appropriate Reynolds number of the induced steady streaming with velocity 
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O(em/a2R2), to be an order one quantity. Formally, we are concerned with the 
development of a solution in which 

limR, = O(1). 
E+o 

The boundary conditions at  the sphere require vl,vg to vanish there, and the 
stream function must exhibit appropriate source-like behaviour at  (R, 0,O).  

With terms O(e)  in (1) ignored, the leading-order solution llr0 satisfies 
a(D2$,),Qt = 0, and the periodic solution of this equation which satisfies v,. = 0, at 
r = 1, is 

eit , 
R-rp T,U - Rr2 

- l + r +  ” = R2{ ($-2Rrp+R2); (R2r2 - 2Rrp + 1); (4) 

where here, and below, the real part of any complex quantity is to be understood. 
The stream function (4) consists of the source at  (R, 0,O) together with its image 

in the sphere which comprises a source at the inverse point, and a uniform line sink 
between that point and the centre of the sphere. We note that as R + co, 

$’ N i(l/r-rz)(l -p2)eit. (5 )  

This is the stream function which is appropriate to a sphere vibrating in a fluid that 
is otherwise at rest. Some aspects of this flow have been considered by Riley (1966). 

The solution (a), which is inviscid and irrotational, does not satisfy the no-slip 
condition at  r = 1. The adjustment of the slip velocity takes place in a thin Stokes 
shear-wave layer. We introduce this by writing 

and in this layer the leading-order term satisfies 

The solution of (7)  which satisfies the no-slip condition, and matches with (4), is 

yo = RZC(P)f(T) eit, (8) 

(R3 - 3R2p + 3R - p )  
where C(p) = 1- , f(7) = y-i(l-i){i-edl+i)T). 

(R2-2Rp+l) t  

The outer and inner solutions (4), (8) represent the primary fluctuating flow. The 
Reynolds stresses associated with this flow, in the Stokes layer, are responsible for 
the induced steady streaming which we now consider. 

3. The induced steady streaming 
It has been well-established, see for example Riley (1967), that for flows of the type 

under consideration here the steady streaming originates within the Stokes layer 
owing to the action of Reynolds stresses. We write 

!P= Y’+€(Ul”’+ ! q ’ ) + 0 ( € 2 ) ,  (9) 

and we note that in (9) we have .already anticipated that at  O(s) .the flow will consist 
of a fluctuating part (superscript u) ,  and a time-independent part (superscript 5). Our 
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main concern is the steady part of (9). If we substitute (6), (9) into equation (1) then 
a t  O(E)  we have, as the equation for If","), 

In (10) a prime denotes differentiation with respect to p, a dot with respect to 7. The 
required solution of (10) is 

r 

which has previously been presented by Wang (1982). We note from (11) that 

a ! q )  
- - -iR4C(p) { 3C'(p) +'C(p)} as 7 +. 00, 

1-Y 

so that the steady streaming persists at O(s) beyond the Stokes layer. 
In the outer region we write, corresponding to (9), 

@ = @o + .(+c.l") + $p) + 2@2 +e3+3 + o ( E 4 ) .  (13) 

Again, it is the steady streaming represented by @? in (13) that is of greatest interest 
to us. Upon substitution of (13) into ( I )  it has been shown by Riley (1966, 1967) that 
an equation for +?) emerges only when terms O(e3) are considered. The appropriate 
equation has been derived by Riley (1966) as 

Equation (14) shows that is to be determined from the complete Navier-Stokes 
equations with Reynolds number R,, which as we have noted earlier and now clearly 
see, is the Reynolds number that characterizes the steady streaming. The boundary 
conditions which +I") must satisfy are 

+y) = 0 - a+?' - - - ~ R 4 C ( p ) { 3 c ' ( p ) + 6 C ( p ) )  Y = F(,u), say, on r = 1, 
ar 1-P 

W a ,  b )  

I,@) - o(?) as t-+ co. (16) 

as required by matching with the Stokes layer, and 

We consider next the solution of (14), subject to (15), (16) in the limiting cases of 
small and large streaming Reynolds numbers R ,  respectively. 

(i) R, < 1 
The governing equation, from (14), is D4@f)  = 0, and the solution of this equation 

which satisfies (15a) and (16) is 
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FIQURE 1. In this figure we show the stagnation point of attachment O,, which is determined from 
F(,u) = 0, where F ( p )  is defined in (15b),  and is independent of R,. Also shown is the momentum flux 
ratioMJM, for R, % 1, whereM is defined in (24). In each case the broken line represents the limit 
WR+CO. 

where 

and P,(p) is the Legendre polynomial of degree n. The solution is completed by the 
determination of the constants Bn from the condition (15b). From (17), (18) this gives 

00 

C BnPn(P) = -P"(P), 
n = l  

so that 

since P( & 1)  = 0. For all the examples we have considered it has not been necessary 
to use more than 40 terms of the series (17).  

The solution (17) has been previously given by Riley (1966) for the special case. 
R = 00) which corresponds to ( 5 ) ,  and by Wang (1982) for finite values of R. The latter 
author expresses the solution in terms of Gegenbauer polynomials ; however we have 
preferred to work with the more familiar Legendre polynomials. Wang has suggested 
that as R decreases towards unity the character of the steady streaming changes, and 
becomes multi-cellular in form. He illustrates this by a streaming pattern for R = 3, 
and remarks that the multi-cellularity increases when the source is moved even closer 
to the sphere. This proposition is, however, incorrect. In  addition to vanishing at 
p = 1 ) P(p)  has only one zero in the interval - 1 < p < 1, at ,u = ps say, for all values 
of R. The outer flow has, therefore, only one stagnation point on r = 1, at B = 6,) in 
addition to the stagnation points at  6 = 0, IC. Wang's error may be traced to an error 
in his evaluation of B4 for R = 3, the published value of which overestimates the 
correct value by a factor of 10. 
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In figure 1 we show the variation of 0, with R.  As R +  1 the stagnation point 
8 = 8, moves closer to 8 = 0 and, as may be expected, the steady streaming becomes 
increasingly vigorous in the region 0 < 8 < 8,. Streamline patterns associated with 
the outer steady streaming $?) are shown in figure 2 for various values of R.  

(ii) R, % 1 

In this case the flow outside the Stokes shear-wave layer does itself exhibit 
boundary-layer behaviour. The outer boundary layer is of thickness O(R$), and in 

(20) 
it we write $?) = R;B@), r -  1 = R-' 6 ". 
When the variables (20) are introduced into (14) we recover the appropriate 
boundary-layer equation for @. However we find it convenient to integrate this 
once with respect to y, and introduce the velocity components u = vf), v = &v@) 8 r  

where up), vIp) are related to 11.1"' as in (2). The equations satisfied by u, v are, then, 

a a 
-((usinO)+-(wsinO) = 0, 
ae aY 

which are the conventional boundary-layer equations. The boundary conditions to 

(22) 
be satisfied are u+O asy+co, 

together with a condition of matching with the Stokes layer 

(23) 

where F is defined in (15 b).  In figure 3 we show u, as a function of 8 for various values 
of R. The numerical solution of (21) commences at the stagnation point 8 = Os, and 
is carried out using the numerical method adopted, and fully described, by Potter & 
Riley (1980) and Awang (1984) for the free-convective boundary-layer flow over a 
sphere. For 0 > 8, where u, > 0 we introduce the variable e=  0-8, into (21); the 
integration then proceeds from @ =  0 in the direction of s increasing. For 0 < 8,, 
where u, < 0, we define new variables 8 = 8, - 8 , C  = - u in (21) ; the integration then 
proceeds from 8 = 0 to 8 = 8,. 

A feature of the solution is that the momentum flux in the boundary layer is non- 
zero as ~ + O , K .  The momentum flux is given by 

v = 0, u = u, = --F(cos @/sin 8, 

M(8)  = 2x u2 sin 8 dy. (24) J: 
We define M ,  = M(O), M ,  = M ( n ) ,  and in figure 1 we show the variation ofMJM, with 
R. We note that the momentum flux ratio increases dramatically as the source 
approaches the sphere. This is as in the case of two-dimensional flow, but there is a 
marked difference in the nature of the two flows as the streaming boundary layers 
approach their terminal points. In the planar case the results obtained by Riley 
(1987), for the flow over a circular cylinder, show no unusual behaviour in the 
boundary layer as the equatorial plane is reached, at which point the boundary 
layers collide to emerge as a plane, free jet. The present situation is different as we 
may infer at  once from (24). For M to remain finite as 8 + 0, R the boundary-layer 
solution must clearly exhibit some singular behaviour. This singular behaviour is not 
dissimilar to that discussed by Potter & Riley (1980), and Brown & Simpson (1982) 
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FIGURE 2. The outer flow mean streamlines for R, 4 1 .  In each case the streamlines are plotted 
at equal intervals a@ of +?). (a) R = 00, a@ = 0.05; (b )  R = 5, a$ = 0.1 ; (c) R = 2,  a$ = 0.25. 
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-10 L 
FIQURE 3. The slip velocity ue, defined in equation (23) ,  for various values of R. 

0 0.25 0.5 0.75 1 .o 

FIGURE 4. The entrainment velocity v,, in the case R, %- I ,  for various values of R.  The 
stagnation point 8, is denoted in each case by a bar on the curve. 

for free-convective flow over a sphere, and is associated with the convergence of the 
boundary layer to the points 0 = 0, K in the three-dimensional case. We now consider 
the behaviour of the solution close to these points. 

First, from equation (21b) we see that if v+w,(O) as y+  oc) then we have, in that 

limit, au a2u 

ay a g ’  
v,-=- 

with solution au/ay = A(@ eumY. To satisfy (22) we require v,(0) < 0. This result is 
confirmed in figure 4 where we show urn as a function of 0 for various values of R. 
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Again we note the increasing vigour of the flow, on the ‘source-side’ of the sphere, 
as the source approaches the sphere. Initially the velocity component v is everywhere 
negative within the boundary layer. The first sign of any difficulty is when a change 
of sign of v takes place within the boundary layer. As the terminal points 8 = 0, x are 
approached, this region of positive normal velocity spreads across the boundary 
layer, and becomes unbounded in the limits 8 + O ,  x .  This is the precursor to the 
eruption of the boundary layers which takes place at the terminal points, and we now 
examine it in more detail in the vicinity of 8 = 0. 

Guided by our numerical calculations in which u remains finite, but the boundary- 
layer thickness increases indefinitely, we write 

= a(7), 21 = W ) A ( 6 ) ,  7 = { y + p ( W / 8 ( @ ,  (25 ) 

where lSl-l,lAl-l,l,lll < 1 for small 8. Substitution of (25)  into (21)  gives, at  leading 
order, 

where now a prime and a dot denote differentiation with respect to f ,  8 respectively, 
and we have made the additional assumption that 8al$ 6 1. For non-zero a, 
elimination of B from (26) shows that 88+8 = 0, from which we have 8 = 8-1 and 

The function G(7) ( < 0) depends upon conditions upstream, and can only be 
determined completely from the step-by-step integration of (21). 

The solution (27)  is inviscid in character, and we now analyse the flow in a region 
close to the boundary where viscous effects are important. Our analysis follows that 
of Brown & Simpson (1982).  We note that as 8-t  0, u, - -LO, where k is a con- 
stant, and we write u = -kO+u* such that u* = 0 on y = 0. In equations (21)  we 
now introduce new independent variables {,iZ(O), where f = y$, and we write 
u* = -0,ii;U, v = j&V; F(0) is not determined at this stage but is assumed to be 
large. From (21)  the equations satisfied by U,  V are 

I 

In equations (28)  fls” = - 0 dji/d6 and we assume s” 4 1, an assumption which may be 
verified a posteriori. We now write 

u = 
(29)  

Upon substitution of (29) into (28)  we see that U l ( q ) ,  V,(Q) satisfy 
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where a prime denotes differentiation with respect to  i j .  If we eliminate V, between 
(30a., h )  the resulting equation for U ,  may be integrated once to give 

= - $$ eb? J7y t e-ft3 dt, (31) 

Rut since UT(0) is required to  vanish we infer from (31) that  &ig + 1 and so U, = 
a, i j ,  V, = a,ij2 +2kfi, where a, is a constant. At next order we have, as equations for 

(32 a, 6) I 
= -&'$ewJ:te+dt. (33) 

= 2u,-ip?j, UA?), v 2 m  

~ - i j 2 & + 2 / U 2 - & 8 f i 2 + k 2  = V,, 

from which we deduce, following the elimination of V,, that  

Now, from (326) we have q ( 0 )  = -k2 which gives, from (33), = k23f/( -i)! = A, 
say. We now have two relationships connecting cf(8), b(8) from which we may deduce 
that 

(34) 

where A ,  is arbitrary. The basic structure of the inner region which has just been 
established, is consistent with our numerical calculations and this may be 
demonstrated as follows. Define 

#iii = @, log ( A 2 / @ ,  

so that 37% = 4 4  log (A,/@), from (34), or 

In figure 5 we show, for the case R = 00, k = $ , A ,  = 8.424, the variation of 
exp ( - 37:/4A,) with 8, and confirm the linear prediction (35). 

It remains to  match this solution with our outer inviscid solution (27). This is 
straightforward although the manipulative details, set out in Amin (1989), are 
tedious and yield p(8)  = h/,G(8). The constant a, of U,, is only determined following 
a more detailed investigation of the outer solution. 

With the nature of the breakdown of the boundary-layer solution as O - t O  
established, we now examine the consequences of i t  for the eruption region in the 
neighbourhood of T = 1 , 8  = 0 from which a jet emerges along the axis 8 = 0. We 
have noted that 

v - -qG(q)/B2 as 8+0. 

We interpret the rapid increase of v in the boundary layer as part of the flow re- 
alignment process since, as 8 + 0, the radial component of velocity becomes parallel 
to the axis 8 = 0. On the velocity scale we have introduced, velocities in excess of 
O(1) are not anticipated. We observe, from (36), that  a t  a fixed 7, w p )  = R i b  = O(1) 
when €J = O(R;i) at which point the thickness of the boundary layer on the scale of 
the sphere radius is R i b  = O(R$). We have then an eruption region centred on 
r = 1 ,8  = 0 of dimensions R;f x R;f on the scale of the sphere radius within which 
velocities are O( 1). Introducing these scales into the governing equation (14) for the 
steady streaming, we infer that the eruption region is essentially one of inviscid flow 
in which the vorticity is constant along the streamlines of the flow. 

(36) 
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0.99 0.995 
1 - 2e/Z 

FIGURE 5 .  The function exp ( -  37!/4h,) calculated from the numerical results for R, $ 1, with 
R =  co. 

From the eruption region a thin round jet emerges along the axis 0 = 0. It is 
convenient, for the discussion of this, to introduce a cylindrical polar coordinate 
system (p,  q5, z )  in which the z-axis coincides with the axis 0 = 0 of our spherical polar 
coordinate system. The corresponding velocity components are (v:), 0, up)).  As we 
have already determined, the steady streaming is governed by the NavierStokes 
equations at  Reynolds number R,. For large R, we make the boundary-layer 
approximation in the jet so that vf), vf) satisfy 

These equations are the analogues of (21 a ,  b )  for the boundary layer on the sphere, 
although we have not yet formally introduced any thin-layer scales. The fluid 
emerges from the eruption region to form a jet whose initial diameter is O(R;i) with 
v:) = O(1). At distances O(1) from the sphere, in the jet, we write p = R;$, vf) = .ii, 
vf) = R$, so that, to first order, (37a, b )  become 

a a 
- (pG) +- (@) = 0, 
ax ap 

a 3  a.ii 
.ii-+v", = 0. az ap 

( 3 8 ~ ;  b)  

Equation (38a)  is satisfied if we introduce a stream function fi  such that PiI = @/aP, 
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ptj = -a$/&, so that from (386) .ii = ii($). It then follows, if $ = 0 on p" = 0 that 
3 = $(PI since P 2 =  2 f u ' 0 1  ds 

with the consequence that 6 = 0 to  this order. Thus, on the scale of the sphere, the 
emergent jet behaves as an inviscid parallel flow. For this jet of thickness O(R;i), it 
is only when we are at an axial distance O(Ri) from the sphere, with @) = 0(1) ,  
21;:) = O(R$) that the familiar thin viscous round jet emerges. The details of this are 
discussed by Schlichting (1955). The inviscid behaviour of the jet, described above, 
has features in common with the wake behind a steadily translating spherical gas 
bubble a t  high Reynolds number Re in a liquid. Thus Moore (1963) describes the 
inviscid behaviour of such a wake in a region of thickness O(Re-a) extending over a 
distance downstream O(Re4). The behaviour of our thin round jet is in marked 
contrast to the corresponding plane flow. For the case of a circular cylinder Riley 
(1987) establishes that the emergent jet, following a collision of the boundary layers, 
is one in which viscous effects are important even a t  distances O( 1) from the cylinder. 
Before we discuss the implications of this for the flow outside the boundary layer on 
the sphere, and the jet, we comment on the effect of the jet-flow for the force on the 
sphere. 

In  the complete absence of viscous effects the force which acts on a sphere in the 
presence of a fluctuating source is a force of attraction between source and sphere. 
Wang (1982) has shown that for R, 4 1 this attractive force is enhanced by an 
amount O(e2). However for the present case, with R, % 1, the reverse is true since the 
jet which emerges along 6' = 0 is stronger than that along 0 = n, much stronger when 
the source is close to the sphere as figure 1 shows. There is then a net flux of 
momentum from the sphere towards the source which results in a net force of 
repulsion, O(e2/R!),  between the Bource and the sphere. 

We turn, finally, to the flow outside the boundary layers and jets. There the flow 
is inviscid and irrotational and, as may be inferred from (la), is governed by the 
equation D2$f') = 0. 

The appropriate solution of this equation is 

(39) 

The boundary condition from which the constants C ,  are to be determined is 
provided by the viscous entrainment velocity into the boundary layers and jets. 
However, as we have argued above, entrainment into the jets is negligible by 
comparison with the entrainment into the boundary layers on the sphere. 
Consequently we have, for (40), 

and hence 
J-I 

Streamline patterns in this outer region, for various values of R, are shown in figure 
6. We see how the distortion of the streamlines, as R decreases, reflects the distortion 
of the entrainment velocity shown in figure 4, and further demonstrates the 
increasing vigour of the fluid motion on the source-side of the sphere. 
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47 1 

FIGURE 6. The outer, inviscid, mean streamlines for R, B 1.  In each case the streamlines are 
plotted at equal intervals 81) of @I"'. (a) R = c0,8$ = 0.126; ( b )  R = 1.5,8@ = 0.361. 

Throughout the discussion in this section we have neglected the effect of any finite 
outer boundary to the domain. For two-dimensional flow Bertelsen's (1974) careful 
experiments show a small discrepancy between the measured velocity profiles close 
to the cylinder, and those predicted by theory for an unbounded domain. Duck & 
Smith (1979) and Haddon & Riley (1979) have demonstrated that this discrepancy 
may be explained, in part anyway, by the presence of an outer boundary. 

4. An elementary experiment 
An experimental verification of the flow analysed above, when a pulsating source 

is placed close to a solid sphere, is beyond our capabilities. However, there is one 
special case, namely the case in which the source is placed at  infinity, when an 
elementary experiment can be performed. This simply corresponds to the case in 
which the sphere performs translational vibrations in a fluid which is otherwise at 
rest. Since the emergence of a thin round jet along the axis of vibration has not, 
apparently, been previously recorded we have thought it worthwhile to demonstrate 
this particular feature. 
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FIGURE 7. An example of the visualized jet flow. 

The experiment was carried out in water in a glass-sided tank of length 75 cm, 
breadth 30 cm, and depth 37 em. A polystyrene ball was mounted halfway along a 
flexible welding rod of diameter 0.2 em and length 53 em. The rod was fixed to  the 
base of the tank and perpendicular to it. Although the upper end of thc rod was free, 
a weight attached to it effectively anchored it. A horizontal shaft, which performed 
small-amplitude in-line vibrations, was attached to  the rod onc-quarter of its length 
from the top. 

In  the experiments, the sphere of diameter 4 cm, was vibrated at  17 Hz, and with 
a peak-to-peak amplitude of vibration of it in the range 0.2-0.3 cm, streaming 
Reynolds numbers 0(102) were realized. To visualize the flow a dye was introduced, 
via a hypodermic needle, to provide a thin coating over the upper hemisphere whilst 
a t  rest. The oscillatory motion was then begun. The dye drifted towards the 
stagnation points in a striking manner. From these stagnation points, where the dye 
accumulated, the axial jet was seen to  form quite quickly and move out along the 
axis of vibration. However, to achieve a quasi-steady state with the jet stretched out 
along the axis of oscillation has proved less easy than in the plane case visualized by 
Davidson & Riley (1972). The principal difficulty was associated with unsteady start- 
up effects from which the dye tended to  obscure the subsequent quasi-steady jet. To 
overcome this the dye was made slightly heavier than the host liquid so that the 
initial disturbance fell away. A typical visualization of the jet flow is shown in figure 
7. Although no quantitative measurements were made, dye particles appeared to 
move with uniform speed in the jet, as would be the case in an eRectively inviscid 
flow. However, more detailed measurements are required to confirm this. 
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